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All the solutions of the problem of the exponents of the fist terms of the Laurent series which satisfy 

the equations of motion of a heavy solid with a fixed point are found using Newton’s polyhedron 

method. Of the twenty-six solutions obtained seventeen are new. The conditions for arbitrary constants 

of inte~ation to appear in the Laurent series are investigated. 

The problem of the meromorphic solutions of the equations of motion of a heavy solid with a fixed point 

was formulated for the first time in [l] and investigated in [2,3] by Kowalevski. In the Euler and Lagrange 
cases known previously the solutions of the equations of motion were expressed in terms of elliptic 

functions of time, i.e. functions that could be expanded in Laurent series and which have no other 
singularities apart from poles. Kowalevski raised a question of investigating in what other cases, apart 
from existing ones, the solutions of the equations of motion in this problem possess the same properties. 
We are primarily interested in solutions which contain a complete set of constants of integration, in this 
case five. She takes the series (the summation with respect to n is from zero to infinity) 

where n, and m, (i = 1, 2,3) are negative integers, and asserts [l] that it follows from a comparison of the 

exponents of the fist terms of the series that 

n; = -1, mi=-2 (i= 1,2,3) (O-2) 

without, however, considering the question of whether this system of values of the exponents is unique or 
not. 

Markov [4] first drew attention to the in~mpleteness of the solution of the Kowalevski problem (see 

also [S, 61). 

Markov’s first objection. One cannot conclude from a comparison of the exponents of the first terms 
the Laurent series (0.1) that the values (0.2) are the only ones possible. If we consider the systems 
exponents of the first terms of the Laurent series, we will have 

of 
of 

nt-I, nz+ffj, m3, m2 (1,2.3) 
,n 

ml - 1, n3 + m2, n:! + m3 (I. 2,3 
w.3) 
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In each of the six systems Kowalevski equates not two but all four or three numbers, and hence, 
neglects, without sufficient justification, an innumerable set of cases, such as, for example 

ni - --2, mj=-4 (i= 1,2,3f 

Markov’s second objection. Kowalevski ignores the case of multiple roots of its main determinant, but 
nevertheless, the possibility that a unique general integral also exists when there are multiple roots is not 
ruled out [4]. 

Appelrot [6] and Nekrasov [7] drew attention to Markov’s observations. Appelrot generalized the 
system of exponents indicated by Markov, taking it in the form 

ni=dt* mi =-2n (i= 1,2,3) (0.4) 

and proved a theorem that the solutions of the equations of motion of a heavy solid can have a third - 
order pole. By considering the case of multiple roots Appelrot and Nekrasov found a special case, missed 
by Kowalevski, which had previously been found by Hess [S]. 

Lyapunov [9] took the second objection of Markov and proved the uniqueness of the general cases of 
Euler, Lagrange and Kowalevski integrability, in which the solutions of the equations of motion are 
expressed by unique functions of time. Lyapunov concludes [9]: ‘<If, therefore, we can speak of some new 
case of the uniqueness of the functions p, q, I, yl, k, r3 for real A, B, C x,, yc, z0 and for non-zero A, B, 
C, thii can only be on the assumption that the initial values of these functions are subject to known 
conditions”. 

After the above papers were publiihed it was assumed for a long time that the question of the unique 
solutions of the problem of the motion of a solid had been finally clarified [lo]. Nevertheless, a number of 
papers on this problem appeared, where special cases of the in~~a~~~ of the equations of motion were 
indicated, in which the solutions were unique functions of time. However, apart from the Hess-Appelrot 
case, no other special cases of the motion of a solid were obtained by Kowalevski’s method, and in the 
well-known book by Golubev [ll], it is merely mentioned. 

Only in two papers by Bogoyavlenskii [12,13] was it convincingly shown that Kowalevski’s method can 
also be used to obtain special solutions containing less than five arbitrary constants of integration, and he 
succeeded in obt~~g the new conditions for such solutions to exist and in finding the conditions which 
connected the constants of integration. It was quite correctly pointed out that the conditions for special 
cases to exist, when the solutions are meromorphic, and also the nature of the limitations imposed on the 
initial conditions, had not been investigated at all. 

Note that Kowalevski’s method has been successfully used in many other problems with a physical 
content, such as the Henon-Heiles system, Todd chains, etc. [S] (see also [U-17]). 

The purpose of the present paper is to give a comprehensive answer to Markov’s first objection. 

1. We will consider the problem of the possible systems of exponents of the first terms of the 
Laurent series for the solutions of the problem of the motion of a heavy solid with a fixed 
point. To do this we will use the method of greatest and least exponents or, as it is now called, 
Newton’s ~lyh~ron method [IS] (we recall Markov’s objection regarding this method). By 
the well-known method in [19], we must take the expressions for the first terms of the Laurent 
series (0.1) and substitute into the system of equations of motion of the heavy solid 

~+(C-B)qr=Mg(YoYs-bYz), Yr =Y2 -4y3w (Am) (im) hdodd (1.1) 

The system of equations (l.l), as we know, has three first algebraic integrals (energy, 
momentum and geometrical) 

Ap2 + Bq2 C Cr2 = =4&OYl-+ YoT2 + wY3) + h 

Apy,+Bq~~+Cry,=f. Y;+Y;+Y;=f 
(1.2) 
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The system of exponents has the form (0.3). Comparing the four exponents in the first three 
equations and the three exponents in the last three equations we have 

n,-1=nz+n3=ncj=mz (192.3) 

m,-1=n~+m2=nz+m, (192.3) 

It can be shown that the system of exponents (0.2), indicated by Kowalevski, serves as a 
unique solution for these equations. But to obtain the Laurent series with non-zero constant 
coefficients pO, q,,, r,, fo, go and h, it is sufficient to compare not four and three exponents, as 
Kowalevski did, but two. Comparing the exponents in (0.3) in pairs, we obtain the following 
equations 

ni-1=n2+n3, n1-1=m3, “l-l=*, n2+n3=m3, 

n2 +n3 =q, m3 = m2 (L2.3) 

ml-l=n3+h, ml-l=n2+m3, n3+m2=n2+m3 (1,2,3) (1.3) 

In order to obtain some solution for the numbers 4, m,, we must take from each row (from 
all six) one equation and combine them in the system. The solutions of each such system gives 
the necessary set of numbers n,, m,. Since the number of different triples of equations 
obtained from the first three rows (1.3) is 216, and from the second three rows is 27, the 
number of all possible sextets of equations, which exhaust the possible sets of numbers n,, m, 
is equal to 216x27 = 5832. This is obviously the “innumerable set of other cases”, which 
Markov had in mind. 

Analysing Eqs (1.3) we note that in the fourth, fifth and sixth rows the last equations are 
dependent, and hence many solutions are possible in which one of the quantities n,, mi is 
ambiguous. 

All the systems obtained in this way were solved using the “REDUCE” software package. 
Many solutions were obtained in which one or several of the quantities n,, m, are arbitrary. A 
large number of these solutions are the Kowalevski and Appelrot solutions (0.3) and (0.4). 

We must choose from the number of solutions obtained those which satisfy the principle of 
greatest and least exponents. 

The solutions of the systems obtained were checked to correspond to this principle and were 
chosen in such a way that in each row in (0.3) there were two equal numbers and, in addition, 
these two equal numbers must be the least. Laurent solutions were obtained in this case 
arranged in increasing powers of the time z. An analysis of all possible systems of solutions 
enabled us to distinguish the following independent systems of solutions which satisfy the 
principle of least exponents and give comprehensive answers to Markov’s first objection 

1. n, = -3-m,, n2=-3-*, n3=-1, m, =m,=-2, +>A, A=B 

2. n1 =m,+l, n2=m3+1, n3=-1, m,=m2=-2, m,>-2, ~~0 

3. 111 = n, = n, It3 c-1, m,=q= -2, n<-1, A&B, m,,>-2 

4. n, =n, =n3 =-1, m2 =m3 =-2, m, ~-2 

5. n1 =n2 =m,/2, n3=-1, m, =m2, m3=nr2/2-1, q<-2, zO=o 

6. nl=nz=n+/2, n3=-1, ml=%, q,=O, m,<-2, m3>-2 

7. n1 =n2=n3=-1, m, =-2, %=m3=m, m<-2, x,=0 

8. nI =n2=n3= -1, *=-=m, m>-2, m, >-2, m, >m 

9. nl =mi+l, h=mi+l, n,=-1, m,=m2, A=B, m,<-2, m3>_2 

10. “I =m,+l, +=mi+l, 5=-l, ml=m2, m3=-2, m,<-2, A=B 
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11 nl =(2m, w3, It2 =rcj =(m, -1)/j, m2 =m3. m3 =(2m, -2)/3, m, c-2 

12. n, z-1, n2=m,+l, 9=m, z-2, m,+n3>-3, m,<n,,-1, x,=0, m, >--2 

13. n,=$=-l, mI=mz=m3=-2, n,>l 

14 n, =% =n3 =-1, m, =m2 =m3 =+l 

15. “I = “2 =m2-m3-1, n3=--1, ml=m2, A=B, m,>--2, m3>m2, m2<-2 

16. “I = ‘k? = m, J2, n3 =m3-m, 12, ml =m2, q >(3/2)m, +l, m3 cm, 12-l 

17 n, =n2 =n, n3 = -1, m, =mz =2n, n<--1, m,>-2, q, =O 

18. n, =n3 =-1. n2 =n, ml =m2 =m3 =m, n>-1, m<-2 

19. nl = 5 = n, n2 =m, ml =m3=2n. m2=m+n, y,=O. n2 c-l, n3<-1, n2<n3 

20. nl =n, =n3 =n, ml =m, =m3 =2n 

21. n1 =n2 =m,+l, n3 z-1, m,=2m+2, m2=2m+2, m3=m, zo=O, m<-2 

22. n, =n, =m,+l, n3 =-I, m, =m2 =m, mc-2, m3cm, m<2m3+2 

23. nl =m+l, n, =n3=m12, m, =(g)m+l, m2 =m3 =m, m<-2 

24. It1 =n2 =m/4-W, n3 =mf2, m, =m2 =3m/4-K, m3 =m, mc-2 

25. n, =-1, n2 =n3=m-n-1, m, =n, m2 = q=m, mc-2, n>m, B=C, n>-2 

26. n1 =n?_=n3=n, m, =%=m3=m, n<-1, m<2n 

Solutions 2, 4, 8, 13 and 14 were obtained previously in [20]. All the remaining solutions 
require checking. We will not indicate Kowalevski’s solutions here. The system of solutions 20 
corresponds to Appelrot’s solutions. 

2. The next stage of the investigation involves obtaining the coefficients of the first terms of 
the Laurent series for each version of the Kowalevski exponents from the system of non-linear 
algebraic equations. Then, all the remaining coefficients of these series are obtained 
successively from the systems of linear equations. In addition, it is necessary to obtain the 
limitations on the parameters of the problem, on satisfying which arbitrary constants appear in 
the coefficients of the Laurent series. 

In view of the fact that a detailed description of these investigations would take up a large 
amount of space, we will confine ourselves to stating the results obtained. Since many solutions 
for the Kowalevski exponents obtained in Section 1 contain undetermined quantities, we will 
confine ourselves to one example of the construction of the Laurent series giving an undeter- 
mined quantity. It is also possible to construct series for other values of the undetermined 
quantities. 

The two known solutions of the problem of the Kowalevski exponents (0.2) and (0.4) will 
not be investigated further. 

Using the example of solution 1 for the Kowalevski exponents we will describe how systems 
of algebraic equations for finding the first and subsequent coefficients of the Laurent series can 
be obtained. We have 

nl = n2 =-3-m3, n3=-1, m,=mz=-2, m3>-2, A=B 

We will write the system of exponents of the first terms of the Laurent series for the whole 
system (0.1). In this case it is as follows: 

-4-m3, --4-m3, Im3, -2) 

A-m3, A-m3, (-2,m3) 

4, IO), -2, -2 

-3, -3, -3 (2.1) 



Meromorphic solutions of the equations of motion of a heavy solid with a fixed point 35 

-3, -3, -3 

{m3- 1). -5-m3, d-m3 

It is obvious that in each row there are equal exponents, and when q >-2 this system 
satisfies the principle of least exponents. To set up a system of non-linear algebraic equations, 
which we must do in order to obtain the coefficients of the first terms of the Laurent series, we 
choose from system (0.1) only those terms whose exponents in (2.1) are least. In (2.1) these are 
all the exponents not within the braces. Finally, the system of non-linear algebraic equations 
for obtai~ng the coefficients of the first term of the Laurent series has the form 

An,po’(C-A)qO~O=O~ qfo =wo-qoho 
An2qo + (A - C)p,r, = 0, m,go = Poho - ro&l 

cn,r, = wr~xotf~ -- Yo.fi 1. 0 = %h, _- PofTo 

It has two solutions 

1. p. =o, qo =o, ‘0 =z!%, fo =+2c/l~I;F(x,Itir,)], 

go=T2Ci/[M (x + g o iyo)l, h, is an arbitrary number 

2. p. = fiqo, r. = cLi, f0 = I& go = Ihi, h, = cL2iIqol 

(2.2) 

i=J2 

where 

~=A(3+m3)/(C-A), j.kl = -CA(3+m,)/[Mg(C-A)(ixo -yo)] 

(2.31 

p2 =-CA[z(C-A)-A(3+m~)1(3+m,)IIMg(~~o-yo~(~-A)Z~ 

The abbreviated system of linear algebraic equations for finding the further coefficients of 
the Laurent series has the form 

(n + q Kr, - &T(YO~~ - XOS" ) = R,,, 

02 + ml >.fn - $8, + go&, -go% + hog, = F, 

@+mdg, -POT, +rof, --hop,, + for, =G, 

-qofn + peg, - foqn + gopn = f&l’ n ’ m 

where P,, Q,,,, . . . , H,,, are polynomials of the coefficients of the Laurent series obtained in 
the preceding steps. 

The system of equations (2.4) differs from the system considered by Kowalevski. This system 
contains only the coefficients of those terms of the Laurent series, the sum of the exponents of 
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which is least for this step. We will further show that in solutions 1 and 2 the determinant of 
system (2.4) is identically zero at any step. In order to construct Laurent series in this case we 
must require that the condition for the system of equations (2.4) to be compatible is satisfied. It 
has been established that for solution 1 in (2.3) this condition of compatibility is not satisfied 
for any step. For solution 2, from the condition for system (2.4) to be compatible it reduces to 
the equation for ~md~g one coefficient &. Here we obtain a Laurent series containing two 
constants, For the other constants to occur in the coefficients of the series it is necessary for 
some fifth-order minors to vanish. These minors are obtained by cancelling some columns and 
rows of the determinant of system (2.4). In all we can form 36 different minors. We will 
consider the fifth-order minors to be identically non-zero. 

Cancelling the first column and the first row we obtain the following determinant 

4 = (n - 4)(~,-,~~ + fox0 >k (A - C) (2.5) 

It vanishes when: (1) A = C (kinetic symmetry), (2) x0 = y0 = 0 (the Lagrange case), and (3) 
n=4. 

In case 3 a constant of inte~ation occurs in the coefficients of the series at the fourth step. 
The condition for the system of five linear equations to be compatible leads to the fixing of the 
constant Q,,, but a new constant occurs. 

Cancelling the first column and the fourth row we obtain the determinant 

The equation D, = 0 has a single root 

n=6+2m3 

The deter~n~t obtained by cancelling the first column and the last row is 

(2.7) 

(2.8) 

If x0 = 0 in (2.8), the equation r>, = 0 has two roots 

n=6+2m3, n=2+A(3+ml,)/(A-C) 

The second root must be integer, which imposes limitations on the parameters of the 
problem. The triangle inequality will be satisfied if the inequalities 0 < CIA c 2 are satisfied. If 
CIA=113, we have n=5, m,= -1; n=8, m,=l; n=ll, m,=3; etc. If AtC=2/3, we have 
n=g, m,= -1; n=l4, m,= 1; rr= 20, m, =3, etc. 

Cancelling the second column and the fourth row we obtain the deterrer 

D4 = [n - (6 + 2q BPoYo + 40x0 1 

The equation 0, = 0 has the root (2.7). 
Cancelling the fourth column and the first row we obtain the determinants 

D5 = C(n - 4)(n + s){(n + n2 )Ago + f&(A - 01 

The equation 4 = 0 has the roots 

n=i, n=O, n=6+2m3 

Cancelling the last column and row we obtain a determinant with a single real root (2.7). 
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Finally, using solution 2 we can construct Laurent series containing two constants of 
integration. 

The relation between the co~t~ts of the energy and moments integrals can be fotmd by 
substituting, for example, the Laurent series (0.1) into the integrals (1.2). We thereby obtain 
the following equations 

A(P; +q; +~P,P, +Q,P, +2%q,)+Wi2 +2r,rz~=2~~~(~oh +YO& +zoh,)+h 

4~2$2 + pof4 + Pdfo + mfs + hfi ) + A(w, f 4084 + q&o + wb + +a ) + 

+c(~~,+~~~r~~~=f 

Since all the coefficients of the series are expressed in terms of arbitrary constants, these 
three relations also contain these constants. E~~nat~g them, for example, using the result, we 
obtain equations relating the constants of integration h and 1. 

In solution 2 

nl = n2 =nl,+l, n3=-I, m, =m2=-2, zo=O, m,>-2 

Here it is possible to construct Laurent series for the fo~owing conditions: 

1. m, = 0, A = B, C = A/2, x, = 0, & = 0, the constant of integration occurs for n = 1; 
2. m, =l, C=(21-4(133)3/1/8, B=[J(133)-9jA/4, x,, = b =0, the constant of integration 

occurs for n = 1, and the triangle inequalities for the moments of inertia are satisfied; 
3. m, = 0, A = 2(B- C), 3 = 24C/(5 + 4(288)), x0 = & -0, the constant of integration occurs 

for n = 3, and the triangle ~equalities are satisfied. 

By changing the value of m, we can obtain other conditions for the Laurent series to exist. 
In all the cases mentioned above we have series containing two arbitrary constants. 

In solution 3 

?+=%=Q, ri3=-1, #ai=%=-2, m,>-2, A=B 

If q= -2, -3 and -4, we have C = 2A, 5Af2,3A, etc. 
Here it is possible to construct Laurent series containing two arbitrary constants for different 

n, and q, for example, for n, = -2 and m, = 0. 
In solution 4 

The constants of integration occur in the Laurent series at the second step, if the following 
conditions are satisfied 

BC=4(A-B)(A-c) or C=2fA-B), ml=1 

and at the fourth step, if the following conditions are satisfied 

9BC=4(A-B)(A-C) or 3C=2(A-B), ml=3 

The coefficients of the Laurent series contain three arbitrary constants if z, = 0, and two 
arbitrary constants if fo = 0. 

In solution 5 

Ir,=n,=~/2, 5-1, q)=o, m3=?+/2-1, m,e-2, m,=m, 
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When the following conditions are satisfied 

C=(B’ +2A2 -3AB)l(A-B), 2fB-C)A$-(2B2-A’-3BC+AB+AC)y,2=0 

the Laurent series contain two arbitrary constants. 
In solution 6 

q=r+=*f2, n, =-1, q=O, *c-2, m,>-2 

The Laurent series contain three arbitrary constants when the following conditions are 
satisfied 

m,= -1, *=-4 

A=B=3Cl5 (n=4); A=B=4C/7 (n=6); A=B=5C/9 (n=8); 

A=B=6C/ll (n=lO) 

etc. It is also possible to construct series for other combinations of m, and q. 
In solution 7 

n,=%=n3=-1, ml =-2, q=+=m, mc-2, x,=0 

Provided that 

n=C$/[(B-C)yi]+B/(B-C)-m 

is a positive integer, it is possible to construct Laurent series with two arbitrary constants. The 
possibility of constructing series with m= -3 has been shown. The constant of integration 
occurs when n = 2. 

In solution 8 

“1 = n.2 = II3 =-I, m,=m3 =m, m, >m>-2 

When 

m=-1, m, =O x&#+C),/(B+C)(B-C)+2i$?C=O, yo=-~, A=B+C 

it is possible to construct Laurent series with two constants of integration. 
In solution 9 

n,=n2=m,+l, n3=-1, m,=m2, m,<-2, m,>-2, A=B 

If II = A(q + l)l(A - C - q) is a positive integer we have Laurent series with three constants of 
integration if the following conditions are satisfied 

m, =-3, my=-1, n=6, 5A=3C 

and the triangle inequalities are satisfied. 
In solution 10 

n,=n2=m,+1, m,=m2, A=B, m3=-2, n3=-1, m,<--2 

Provided that m, = -3, m, = -2 and n= A(m, +l)l(A-C-q) is a positive integer, for 
example with n = 6, and 5A = 3C we have Laurent series with two constants of integration. 
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In solution 11 

nr=(2mr+1)/3, n2=n3=(1$-1)/3, m2=m3=2(m,-1)/3, m,<-2. 

With m., = -5 we have Laurent series containing three arbitrary constants. 
In solution 12 

n,=-1, n2=m,+lr m2=m3 z-2, m,>-2, n,>-1, m,<n3-I, x0=0 

For n, = 1, m, = -1, n2 = 0, A = 34 C = 2(A - B), y, = 0 we have Laurent series containing 
two arbitrary constants. Laurent series are also possible for other values of m, and n3. 

In solution 13 

111 =n2 =-1, m2 =m, =m, z-2, n3 >-] 

For 4 = 1, z, = 0, A = 2C we have Laurent series with three constants of integration. 
In solution 14 

n, = n2 = n3 e-1, m, =m2 =m3=fl 

The Kowalevski determinant for m, = -1 (i = 1, 2,3) is 

D=n3(n-3)(n-l)(n-2) 

For the case m, = +l (i = 1, 2,3) 

D=n3(n-3)(n+l)(n+2) 

In the first case, when the following condition is satisfied 

{ 2C(A + B - C)(B - C)(A - B)F(A, B, C) + 

+B(2B-A-C)(A+C-B)(A+B-C)F(A,B,C)+ 

+ BC(A - C - B)2(C - A)G(A, B, C)}x, - 

- ( 2B2C(A - B)(A + B - C)W(A, B, C) + 

+ B(2B -A - C)(A + B - C)2ABx W(A, B, C) + 

+ BC(A + C - B)(A + B - C)(C - A)(B - C)AK )yo + 

+ { 2B2C(A - B)(A + C - B)G(A, B, C) - 

- 2CA(A + B - C)(A - B;(B - C)G(A, B, C))z, = 0 

F(A, B, C) = {ABC(A - B)(C -A)} %, G(A, B, C) = (B(B - C) (C-A)) )/2 

W(A,B,C)=(C(A-B)(B-C))x 

we have Laurent series with four constants of integration. 
In the second case, when the following conditions are satisfied 

1. (-(B - C)z(C -A)[ABC(A -B)]% + AB(C - B)(2A - B - C)[A(A - B)lM 1% + 

+ (A(C+B)(C-A)+(2C-3A)(B-C)}(A-B)[C(B-C)]~zo=O,yo=O 

2. or B = 3ACI(A + 2C), y, = 0 (the first condition (1) is also satisfied), we have Laurent series 
with three constants of integration. 
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In solution 15 

3 =n2 =m,-m,-1, +=-I, mi=m2, A=B, m,>-2, a~~c-2 

If m, = m, = -3 and m, = -1 the Laurent series contain two arbitrary constants. 
In solution 16 

If m,=-6and m,= -5 Laurent series occur with two constants of integration. 
Solution 17 is equiv~ent to solution 6. Solution 18 leads to well-known cases. Solution 19 is 

equivalent to solution 16. Solution 20 was considered by Appelrot, Solution 21 is ~~v~ent to 
solution 5. Solution 22 is equivalent to solution 9. Solution 23 is equivalent to solution 11. 

In solution 24 

nl=~=mf4-1, n3=mf2, ml=*=3m/4-j$, m_,=m, m<-2, x,=y,==O 

If na=-6, 4=n2=-2, n,=-3, m,=m, =-5 we have Laurent series with three constants of 
integration. 

Solution 25 is equivalent to solution 15. Solution 26 reduces either to the case considered by 
Appelrot or to Euler’s case. 

We can finally conclude that of the 26 solutions of the problem of the exponents of the first 
terms of Laurent series which satisfy the equations of motion of a heavy solid with a fixed 
point, only 17 are new. 

The equivalence of the solutions follows from the same non-linear systems of algebraic 
equations for deterring the coefficients of the first terms of the Laurent series, and also from 
the same linear system of algebraic equations for determining all subsequent coefficients of the 
series. 

I with to thank V. V. Kozlov for suggesting the problem and for numerous discussions and 
advice. 
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